skip to main content


Search for: All records

Creators/Authors contains: "Faerman, Yakov"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dwarf galaxies are found to have lost most of their metals via feedback processes; however, there still lacks consistent assessment on the retention rate of metals in their circumgalactic medium (CGM). Here we investigate the metal content in the CGM of 45 isolated dwarf galaxies withM*= 106.5–9.5M(M200m= 1010.0–11.5M) using the Hubble Space Telescope/Cosmic Origins Spectrograph. While Hi(Lyα) is ubiquitously detected (89%) within the CGM, we find low detection rates (≈5%–22%) in Cii, Civ, Siii, Siiii, and Siiv, largely consistent with literature values. Assuming these ions form in the cool (T≈ 104K) CGM with photoionization equilibrium, the observed Hiand metal column density profiles can be best explained by an empirical model with low gas density and high volume filling factor. For a typical galaxy withM200m= 1010.9M(median of the sample), our model predicts a cool gas mass ofMCGM,cool∼ 108.4M, corresponding to ∼2% of the galaxy’s baryonic budget. Assuming a metallicity of 0.3 Z, we estimate that the dwarf galaxy’s cool CGM likely harbors ∼10% of the metals ever produced, with the rest either in more ionized states in the CGM or transported to the intergalactic medium. We further examine the EAGLE simulation and show that Hiand low ions may arise from a dense cool medium, while Civarises from a diffuse warmer medium. Our work provides the community with a uniform data set on dwarf galaxies’ CGM that combines our recent observations, additional archival data and literature compilation, which can be used to test various theoretical models of dwarf galaxies.

     
    more » « less
  2. ABSTRACT

    Motivated by integral field units (IFUs) on large ground telescopes and proposals for ultraviolet-sensitive space telescopes to probe circumgalactic medium (CGM) emission, we survey the most promising emission lines and how such observations can inform our understanding of the CGM and its relation to galaxy formation. We tie our emission estimates to both HST/COS absorption measurements of ions around z ≈ 0.2 Milky Way mass haloes and models for the density and temperature of gas. We also provide formulas that simplify extending our estimates to other samples and physical scenarios. We find that O iii 5007 Å and N ii 6583 Å, which at fixed ionic column density are primarily sensitive to the thermal pressure of the gas they inhabit, may be detectable with KCWI and especially IFUs on 30 m telescopes out to half a virial radius. O v 630 Å and O vi 1032,1038 Å are perhaps the most promising ultraviolet lines, with models predicting intensities >100 γ cm−2 s−1 sr−1 in the inner 100 kpc of Milky Way-like systems. A detection of O vi would confirm the collisionally ionized picture and constrain the density profile of the CGM. Other ultraviolet metal lines constrain the amount of gas that is actively cooling and mixing. We find that C iii 978 Å and C iv 1548 Å may be detectable if an appreciable fraction of the observed O vi column is associated with mixing or cooling gas. H α emission within $100\,$ kpc of Milky Way-like galaxies is within reach of current IFUs even for the minimum signal from ionizing background fluorescence, while hydrogen n > 2 Ly-series lines are too weak to be detectable.

     
    more » « less